THE STEREOCHEMISTRY OF EUDISTOMINS C,K,E,F AND L

John W Blunt,* Robin J Lake and Murray H G Munro

Department of Chemistry, University of Canterbury, Christchurch, New Zealand, & Harbor Branch Oceanographic Institution/SeaPharm Research Laboratories, Ft. Pierce, FL.

Tatsushi Toyokuni

School of Chemical Sciences, University of Illinois, Urbana, IL

Summary: Eudistomin K has been isolated from the New Zealand ascidian *Ritterella sigillinoides* (Brewin 1956). Nmr studies have shown that the stereochemistry of the N-O bond is 2α, not 2β as previously suggested.

Much interest has been generated by the recent report on the structures of the eudistomins, a series of β -carboline derivatives isolated from the Caribbean ascidian *Eudistoma olivaceum*.¹ Some of these, in particular eudistomin K (1a) which contains the novel oxathiazepine ring, have shown potent *in vitro* antiviral properties, and are now the subject of considerable interest as synthetic targets (see e.g.²). During the course of investigations of the New Zealand marine biota for new classes of antiviral and antitumour compounds,³ a compound which showed marked activity against *Herpes simplex* Type I and *Polio* vaccine Type I viruses *in vitro* was isolated from the compound ascidian *Ritterella sigillinoides* (Brewin 1956). Spectroscopic investigations of this compound revealed marked similarities with the data reported for eudistomin K (1a).¹ The *Ritterella* -derived compound has now been shown to be the salt (1b) of eudistomin K, but in the course of these studies it became necessary to revise the stereochemistry originally suggested for eudistomin K.

Extraction of 2.6 kg of *R. sigillinoides* with methanol/toluene followed by partitioning between ethyl acetate/water yielded an organic-soluble crude extract (5.3 g). This was subjected to bioassay-directed reverse phase flash chromatography⁴ and preparative reverse phase high pressure liquid chromatography on C-18 packings with $H_2O/CH_3OH/0.05\%$ TFA mixtures to yield 33 mg of the trifluoroacetate salt (1b) of eudistomin K. The ¹H nmr

spectrum of this salt was identical with that of the TFA salt prepared from *Eudistoma* -derived eudistomin K.⁵ Treatment of both salts with IRA400 (⁻OH form) each gave **1a** with identical ¹H nmr characteristics. Furthermore, acetylation of the salt **1b** from *R. sigillinoides* in pyridine/acetic anhydride afforded an acetyl derivative (**1c**) whose spectroscopic properties were identical with those reported¹ for the diacetyl derivative of eudistomin C (**2b**), except for those features associated with the differently substituted aromatic ring.

An examination of the ¹H, ¹³C, homonuclear and heteronuclear correlated nmr spectra⁵ of the *Ritterella* -derived salt (1b) showed that it was necessary to revise the reported assignments¹ for the protons at positions 3 and 4, and the carbons at positions 1 and 10. The full assignments⁶ were assisted by an analysis of the proton-proton couplings, made by inspection of the ¹H nmr spectra and by simulations of the spin systems to extract the δ_H and J_{HH} values.

These analyses confirmed the connectivities required by the structure (1), but did not resolve the issue of stereochemistry at the N at position 2, which had only been assigned tentatively by Rinehart *et al.*¹ as 2β -O. A full

1826

investigation of the proton-proton nOe's was undertaken for each of **1a-c**. For the salt (**1b**) only the following nOe connectivities, in addition to the expected vicinal and geminal connections, were observed using the difference nOe technique with low-power frequency cycling on multiplets in order to achieve high selectivity.⁷

 $H_{1}(H_{3\alpha}); H_{3\alpha}(H_{1}); H_{1}(H_{11\alpha}); H_{11\alpha}(H_{1}); H_{3\beta}(H_{13\beta}); H_{13\beta}(H_{3\beta}); H_{11\alpha}(H_{13\alpha}); H_{13\alpha}(H_{11\alpha}); H_{5}(H_{4\alpha})$

The presence of the nOe connectivity between H_1 and $H_{3\alpha}$ necessitates that these protons be present in a diaxial relationship. Similarly, H_1 and $H_{11\alpha}$ must also be in close spatial proximity. These requirements, together with the observation of an nOe effect between $H_{11\alpha}$ and *one* of H_{13} , and between $H_{3\beta}$ and the *other* H_{13} , can only be accomodated by the existence of the conformation shown in the diagram, which has the 2 α -O configuration. This conformation also contains vicinal dihedral H-H angles⁸ consistent with the J_{HH} values found. Since similar nOe connectivities were observed for 1a and 1c, in particular for the critical H_1 - $H_{11\alpha}$, H_1 - $H_{11\alpha}$, $H_{11\alpha}$ - $H_{13\alpha}$ and $H_{3\beta}$ - $H_{13\beta}$

pairs, it follows that eudistomin K and its acetyl derivative also have the conformation and configuration shown in the diagram. It is thus probable that eudistomins E, C, F and L also have this stereochemistry. Because of the low barrier to inversion at trivalent nitrogen⁹, the eudistomins with the 2β -O configuration almost certainly exist in equilibrium with those with the 2α -O configuration shown here. However, the equilibrium clearly favours the 2α -O configuration, which exists in a preferred conformation for the 7-membered ring.

Acknowledgements: We thank the New Zealand University Grants Committee, the New Zealand Lotteries Board, and the Canterbury Medical Research Foundation for financial support for this project, and the New Zealand Oceanographic Institute for use of facilities. We also thank Professor Sir Derek Barton for helpful comments on this manuscript.

References and Notes

- 1a Rinehart, K.L. Jr., Kobayashi, J., Harbour, G.C., Hughes, R.G. Jr., Mizsak, S.A. and Scahill, T.A., J. Amer. Chem. Soc. 1984 106 1524.
- 1b Kobayashi, J., Harbour, G.C., Gilmore, J., Rinehart, K.L. Jr., Hughes, R.G. Jr., Renis, H.E., Mizsak, S.A., Scahill, T.A. and Lafargue, F., *J. Amer. Chem. Soc.* (in press).
- 2 Han, S., Lakshmikantham, M.V. and Cava, M.P., Heterocycles 1985 23 1671.
- 3 Presented, in part, at PAC CHEM '84 Congress, Honolulu, 16-21 December, 1984.
- 4 Blunt, J.W., Calder, V.L., Fenwick, G.D., Lake, R.J., McCombs, J.D., Munro, M.H.G. and Perry, N.B., J. Nat. Prod. 1987 (in press).
- 5 All nmr spectra were obtained on a Varian XL300 spectrometer operating at 300MHz for ¹H and 75.4 MHz for ¹³C, except for the ¹H nmr spectra for *Eudistoma* -derived **1a** and **1b** which were recorded at 360MHz on a Nicolet EM360 instrument.
- **1a** $\delta_{\rm H}$ (CD₃CN ppm relative to CHD₂CN at 2.00): 7.57, d, *J* = 1.8, H₈; 7.39, d, *J* = 8.5, H₅; 7.21, dd, *J* = 1.8, 8.5, H₆; 6 4.96, d, J =9.2, H_{13 $\alpha}$}; 4.82, d, J =9.2, H_{13 β}; 4.10, bs, H₁; 3.62, ddd, J =9.8,5.0,2.2, H_{3 β}; 3.58, bd, H₁₀; 3.31, d, J = 14.4, $H_{11\alpha}$; 3.11, ddd, J = 11.5, 9.8, 4.0, $H_{3\alpha}$; 2.86, m, J = 15.8, 11.5, 5.0, 2.4, $H_{4\beta}$; 2.83, m, J=15.8,4.0,2.2,0.9, H_{4α}; 2.82, dd, J=14.4,5.6, H₁₁₈. δ_C (CD₃CN ppm relative to CD₃CN at 117.7): 138.3, C _{8a}; 131.6, C_{9a}; 129.1, C_{4b}; 122.3, C₆; 119.7, C₅; 114.5, C₇; 114.2, C₈; 110.0, C_{4a}; 71.4, C₁₃; 70.3, C₁; 54.1, C₃; 50.6, C₁₀; 35.0, C₁₁; 20.6, C₄. **1b** $\delta_{\rm H}$ (CD₃OD ppm relative to CHD₂OD at 3.30): 7.53, d, J =1.9, H₈; 7.34, d, J=8.4, H₅; 7.14, dd, J =1.9,8.4, H₆; 4.97, d, J =9.0, H_{13a}; 4.89, d, J =9.0, H_{13B}; 4.32, bs, H₁; 4.18, bd, H₁₀; 3.62, ddd, J = 9.8,4.6,2.2, H₃₆; 3.48, d, J = 15.8, H_{11a}; 3.12, ddd, J = 11.8,9.8,4.0, H_{3a}; 3.01, m, J = 15.8,6.2, H₁₁₆; 2.95, m, J=15.3,11.8,4.6,2.2, H_{4β}; 2.80, m, J=15.3,4.0,2.2,0.9, H_{4α}. δ_C (CD₃OD ppm relative to CD₃OD at 49.3): 140.0, C_{8a}; 129.5, C_{9a}; 126.5, C_{4b}; 123.6, C₆; 120.7, C₅; 116.5, C₇; 115.5, C₈; 112.4, C_{4a}; 71.9, C₁₃; 67.2, C₁; 54.6, C₃; 51.8, C₁₀; 30.5, C₁₁; 21.2, C₄. **1c** δ_H (CDCl₃ ppm relative to TMS at 0.00): 8.81, H₉; 7.45, d, J=1.9, H₈; 7.27, d, J=8.5, H₅; 7.16, dd, J=1.9,8.5, H₆; 6.63, d, J=9.7, NH; 5.02, m, J=9.7,5.5, H₁₀; 4.96, d, J =8.9, $H_{13\alpha}$; 4.83, d, J =8.9, H_{13B} ; 4.13, bs, H_1 ; 3.61, ddd, J =10.2,5.0,1.7, H_{3B} ; 3.33, d, J =14.5, $H_{11\alpha}$; 3.14, ddd, J=11.5,10.2,4.8, H_{3 α}; 2.92, m, J=15.8,11.5,5.0,2.4, H_{4 β}; 2.80, m, J=15.8,4.8,1.7,0.9, H_{4 α}; 2.78, dd, J =14.5,5.5, H_{11B}; 1.75, s, CH₃. δ_{C} (CDCl₃ ppm relative to TMS at 0.00): 170.4, C=O; 137.9, C_{8a}; 131.2, C_{9a}; 125.1, C_{4b}; 122.7, C₆; 119.1, C₅; 115.4, C₇; 114.5, C₈; 109.3, C_{4a}; 71.0, C₁₃; 69.0, C₁; 54.8, C₃; 46.7, C₁₀; 32.1, C11; 23.3, CH3; 20.6, C4.
- 7 Kinns, M. and Saunders, J.K.M., J. Mag. Reson. 1984 56 518.
- 8 Haasnoot, C.A.G., de Leeuw, F.A.A.M. and Altona, C., Tetrahedron 1980 36 2783.
- 9 Lambert, J.B., Topics in Stereochemistry 1971 6 19.

(Received in UK 16 February 1987)